Dip TIPS as a Facile and Versatile Method for Fabrication of Polymer Foams with Controlled Shape, Size and Pore Architecture for Bioengineering Applications
نویسندگان
چکیده
The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the "Dip TIPS" as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields.
منابع مشابه
Biodegradable polymer scaffolds with well-defined interconnected spherical pore network.
Scaffolding plays pivotal role in tissue engineering. In this work, a novel processing technique has been developed to create three-dimensional biodegradable polymer scaffolds with well-controlled interconnected spherical pores. Paraffin spheres were fabricated with a dispersion method, and were bonded together through a heat treatment to form a three-dimensional assembly in a mold. Biodegradab...
متن کاملThe Advances of Electrospun Nanofibers in Membrane Technology
Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. Electrospinning can generate nanofibers with a number of secondary structures. Surface and/or interior of nanofibers can be functionalized with molecular species or nanoparticles during or after an electrospinning proce...
متن کاملInvestigation of the effective factors on manufacturing calcium phosphates prototypes using 3D printing
Calcium phosphate ceramics has been widely used in the present due to their chemical similarity to bone and good biocompatibility in the physiological environmental and a compatibility with synthetic and natural polymers Recent advancements in additive manufacturing have enabled the fabrication of 3D prototypes with controlled architecture resembling the natural bone. Binder jetting is a versat...
متن کاملToward a facile synthesis of spherical sub-micron mesoporous silica: Effect of surfactant concentration
In this paper, a facile method for preparing sub-micron spherical mesoporous silica by the sol-gel process and cationic surfactant cetyltrimethylammonium bromide (CTAB) as a soft template was reported. Moreover, the effect of surfactant concentration on the specific surface area and the total pore volume was investigated. The specific surface area, pore characteristic, morphology, chemical comp...
متن کاملFabrication of Gelatin Scaffolds Using Thermally Induced Phase Separation Technique
Gelatin is considered as a partially degraded product of collagen and it is a biodegradable polymer which can be used to produce scaffolds for tissue engineering. Three-dimensional, porous gelatin scaffolds were fabricated by thermally induced phase separation and freeze-drying method. Their porous structure and pore size were characterized by scanning electron microscopy. Scaffolds with differ...
متن کامل